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ABSTRACT

Numerical pulse propagation studies using two classical ocean waveguide models
are performed. The first model is a pressure-release surface with a rigid bottom. The
second model is a pressure-release surface with a fluid bottom. The analysis of the
two models is based on normal mode theory assuming a constant speed of sound in the
ocean. The magnitude and phase of the complex acoustic pressure field as a function
of frequency is calculated across a planar array of hydrophones. The time-domain
output electrical pulse from the center element in the array is also computed. The

computer simulation results for the two models are compared and discussed.
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I. INTRODUCTION

In this thesis two classical ocean waveguide models are examined and compared
in order to draw conclusions concerning their differences. The two models that are
examined are the following:

a. pressure-release surface with a rigid bottom, and

b. pressure-release surface with a fluid bottom.

It is well known that the first model (i.e., the rigid bottom model) is not a
realistic one. Although the assumption of a pressure-release surface is valid, the
assumption of a rigid bottom is not. Therefore, the main purpose of this thesis is
to verify how differently this model performs compared to the second one (i.e., the
fluid bottom model) which is theoretically a more realistic model. The complete
theoretical analysis of these two models is well known and is presented in detail, for
example, in Refs. 1, 2, or 3. Based on these references, an overview or sur . -y of
the analytical expressions and relations used in the computer simulation program is
included in Chapter II. Chapter II provides the necessary information and theoretical
backgrourd on the way the waveguide models are approached and implemented in the
computer program. Discussion concerning the way some problems encountered during
the implementation of the models have been resolved is also included in Chapter II.

In order to be able to compare the two models and to decide on the effectiveness
of each one, the models are examined under a relatively wide range of different cases.
The models are tested for various transmitted signals, that is, Hamming-envelope and
rectangular-envelope continuous wave (CW) and linear-frequency-modulated (LFM)
pulses. The location of the receiver is varied also, that is, the receiver is located

at different ranges from the source (short-range and long-range) and also at differ-
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ent depths (above and below the source). The source is an omnidirectional point
source, located at the rectangular coordinates (0,0, 29) where zp is the depth. The
receiver used for all the investigated cases is a $x9 planar array of point elements
(hydrophones), where the center element has the coordinates (zg, yr, zr).

The computer simulation results for each model and for the various cases are
presented and analyzed in Chapter III. The computer simulation results which are
used in order to compare the two models are (i) the resulting output time-domain
electrical pulse from the center element in the receive array and (ii) the characteristics
of the complex acoustic pressure field (magnitude and phase as a function of frequency
at each point of the field) when various input electrical signals at the source are
transmitted through each model. The benefit of having these output results accurately
and correctly calculated is that they can directly support studies in the area of target
localization (i.e., estimating the range and the depth of the source) based on matched-
field processing techniques [e.g., see Refs. 4 and 5)].

The two models are compared based on the computer simulation results and

the differences between them and some concluding remarks are included in Chapter

IV.




T

II. TWO CLASSICAL OCEAN WAVEGUIDE
) MODELS

In this chapter the two classical ocean waveguide models are presented and
explained from a theoretical point of view. A simple ocean waveguide model is il-

lustrated in Fig. 2.1. Note that the ocean surface and bottom are assumed to be

flat.

The notation used for the presentation of the models is as follows:

Medium I: Air

Medium II: Sea Water

Medium III: Ocean Bottom

pi, 1=1,2,3: the constant densities (i%—) of the three fluid media.

¢i, 1=1,2,3: the constant speeds of sound (T":Z) of the three fluid media.

pi€1, P2C2, paca: the characteristic impedances (in rayls = %) of the three
fluid media.

An omnidirectional, time-harmonic, point source is located in medium II at
r = 0 and depth z = z; meters. The ocean depth is D meters. For both models,
the boundary at z = 0 (i.e., the ocean surface) is treated as an ideal pressure-release
boundary, which implies that no acoustic field will be present in medium I due to
the source located in medium II. Both transmitter and receiver are stationary (not
in motion). The analysis of the models is based on normal mode theory with the

assumption of a constant speed of sound in the ocean.
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Figure 2.1 Ocean waveguide model.




A. PRESSURE-RELEASE SURFACE WITH A RIGID BOTTOM

This is the simplest of the two models, where the boundary at z = D (i.e., the
ocean bottom) is treated as an ideal rigid boundary, which implies that no acoustic
field will be present in medium III due to the source located in medium II. For this
model, the acoustic field due to the source located in medium II will be present only
in medium II and no acoustic field will exist in media I and III.

The complete derivation of the expressions for the velocity potential and the
acoustic pressure in medium II for this waveguide model is well known and can be
found, for example, in Refs. 1, 2, or 3. In this thesis the equations and notation
presented in Ref. 3 are used. A summary of the results of the analysis is presented
and briefly discussed below:

The complete normal mode solution for the time-harmonic acoustic pressure in

medium II at a point of cylindrical coordinates (r,, z) is given by

P Np-l .
Pt h,2) = —igp X sin(k,, . 20) HS) (ky, . 7) sin(ks, , z)e 927t (2 -1)

n=0

where the zeroth-order Hankel function of the second kind for the far-field case (i.e.,
ky,.r > 1) is approximated by

2 . "
e-J("ﬂz,n"‘T) , krz,nr >1 (2-2)

H(g?)(k,mr) ~ —
and P, is the peak acoustic pressure amplitude in pascals at the omnidirectional point
source. The pulse propagation solution for this waveguide model shall be obtained
by using Eq. (2-1) as the starting point and will be discussed in Section C.

The wave number k;, in radians per meter, is given by

2rf 27
ky= —L = — -
2= " (2-3)

where f is the frequency of the source in hertz. The propagation vector component

in the z-direction, which is only allowed certain discrete values, is given in radians
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per meter by

2n 4+ 1w
k‘Z = kzz,n = (——2—D— 3

The set of functions sin (k,zm z), n=0,1,2,..., are referred to as the eigenfunctions

n=0,1,2,... (2-14)

or normal modes and the set of values k,,,,, n = 0,1,2,..., are referred to as the
eigenvalues. The normal modes describe the natural modes of vibration within the
waveguide.

The propagation vector component in the radial direction for the nth normal

mode, in radians per meter, is given by

2
k1= (£)  ,f2fa
k., = krz,n = ) 2 (2- 5)
_]k2 ('f&) -1 af<f'n
where f, is the cutoff frequency for the nth mode, in hertz and is given by

(2n + 1)62

fn= 4D 3

n=0,1,2.. (2-6)

For a given value of source frequency f, the nth mode will be a propagating mode
only if f > fa.. If f < fa., then the nth mode is an evanescent mode (i.e., a decay-
ing exponential). The total number of propagatingvmodes N, excited by a source
frequency of f hertz, is given by

N,,=1NT[-;-(3D—f-1>]+1 2-1)

C2
where INT[e] means form an integer by simply truncating the decimal portion of the
real number inside the square brackets. One is added to the result since the first or
lowest mode is mode n = 0. Additional information concerning this model is given
next.

The angle of propagation for the nth normal mode is given by

2
02,n=sin‘1[ 1_(_1}3) ], f>2fa, n=0,12,.. (2-18)

6




Z
Figure 2.2 Propagation vector components of the nth normal mode.

where f, is given by Eq. (2-6). The relationship between the propagation vector
components k, , and k,,, , the wave number k3, and the angle of propagation 0,
for the nth mode is shown in Fig. 2.2.

The group speed in the radial direction of the nth propagating mode, in meters
per second, is given by

2
cg"z,n =0 1- ({f_ﬂ) ’ f 2> fn y N = 0,1,2,... (2 — 9)

The radial group speed is the speed at which energy propagates in the radial direction
and is a function of frequency f. Therefore, the energy associated with different
frequency components will propagate at different speeds. As a result, for a particular
mode n with cutoff frequency f,,, the high frequency components from a transmitted
pulse will arrive at a receiver ahead of the low frequency components. Therefore, due

to this dispersion of energy, the shape of the transmitted pulse will be distorted at
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the receiver.

Finally, the energy E, contained in the nth eigenfunction is given by

E,.=§,"'n=o,1,2,... (2 - 10)

and the time of arrival, in seconds, at the receiver of the nth propagating normal

mode is given by

r
t =

T2.n

(2 -11)

cg"'l.n

where r is the horizontal (polar) range between source and field points.

B. PRESSURE-RELEASE SURFACE WITH A FLUID BOTTOM

In this model the boundary at z = D is treated as a boundary between two
different fluid media—which is more realistic—instead of as an ideal rigid surface.
For the fluid bottom model an acoustic field will, in general, be present in medium
III due to the sound source located in medium II.

Once again, the complete derivation of the expressions for the velocity potential
and the acoustic pressure in medium II for this waveguide model is well known and can
be found, for example, in Refs. 1, 2, or 3. In this thesis, we shall use the equations
and notation developed in Ref. 3. The analysis is based on the assumption that
¢3 > ¢; and some of the results, which are used by the computer simulation program,
are briefly summarized below:

The complete normal mode solution for the time-harmonic acoustic pressure in

medium II at a point of cylindrical coordinates (r,, z) is given by

. PN - _ .
pa(t,r, 9, 2) = "T;Q 3 E;'sin(k,,,20)HS (kyy, r)sin(k,,, z)et > (2-12)

n=0




where E, is the energy contained in the nth eigenfunction and is given by

g . Gn=6., n=012,..
En =1 2Dk,,, —sin (2k=,,. D) - 2(£lta.n (s, D) sin? (k, . D) ) <o
c S 2n < z
4k,, ’ S 2
) (2 —13)

and H® (kr,,) is approximated by Eq. (2-2).
For a given value of source frequency f, the allowed directions of propagation
in medium II correspond to the roots 8, = 6,, ,n = 0,1,2,..., of the following

transcendental equation:

0

tan (2:—fD cos 02) + p3c3_cos : =0, c3>c, 0.<0,<3
* pren (828)" - 1

(2 - 14)

where 0. is the critical angle of incidence at the ocean bottom and is given by

. = sin~! (_c_2> , c3>cy. (2 -15)
C3

Once the angles (roots) 6, , are calculated, then the propagating normal modes are
known since the propagation vector for the nth propagating mode in medium II can
be expressed as a function of the components k,,, and k,, , in the r and z directions
given by

ky;, = kosinby, , (2-16)

and

kzz,,. = kgCOS 02‘,, . (2 - 17)

Note that for 8, = 90°, the plane-wave mode is defined. In reality, there is no plane-

wave mode propagating, since for §; = 90° in Eq. (2-17), we obtain k,., = 0 and,

2z

therefore, sin(k., ,) = 0 in Eq. (2-12). As a result, the contribution of this mode to

the acoustic pressure in medium II is zero. The pulse propagation solution for this
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waveguide model shall be obtained by using Eq. (2-12) as the starting point and will
be discussed in Section C.

The normal modes corresponding to the roots 8;,, n = 0,1,2,... of Eq. (2-14)
are known as trapped modes. These modes are “trapped” in medium II since (i)
the complex reflection coefficient at the ideal pressure-release ocean surface has a
magnitude of unity, for every value of the angle of incidence, and (ii) the complex
reflection coeflicient at the fluid ocean bottom also has a magnitude of unity, for the
angles of incidence in the range 6. < 6; = 6;, < 90°, where 0; refers to the angle

of incidence. The cutoff frequency f,, in hertz, for the nth trapped normal mode is

given by
_ (2n + 1) C2 _
= Do "=0L2 (2 — 18)
The total number of trapped normal modes N, excited by a source frequency f hertz
is given by
4D e
N, =1NT[%(——f-c‘i‘ﬂ—1)] +1. (2 - 19)
2

Finally, the group speed in the radial direction, in meters per second, of the nth

trapped mode is given by

szk,-z'"
Corsn = Topp 0 S 2 n=012 2 — 20)

and the time of arrival at the receiver of the nth trapped mode in seconds is given by

Eq. (2-11).

C. COMPUTER IMPLEMENTATION OF THE MODELS

In order to examine and compare the two ocean waveguide models by using a
computer simulation approach, the models are implemented by a computer program
written in the Fortran 77 programming language. The basic techniques used by the

program are (i) discrete time representation (sampling) of continuous time signals and
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(it) using complex envelope representations for the transmitted and received signals.
The computer program is constructed using the block structure approach and it is
composed of subprograms which are used to perform the computations involved in
the various steps of the problem. Among these subprograms, the most important are
(i) the signal generator for the transmitted electrical signal, (ii) the resulting time-
domain output electrical pulse from the center element in the receive array, and (iii)
the calculation of the roots of the transcedental equation for the fluid bottom model.

The signal generator subroutine was developed and tested during a previous
related thesis work [Ref. 6]. It is used as a tool in this thesis and it has been included
in the computer program structure with no changes. However, care has been taken
in order to create a more accurate representation of rectangular-envelope pulses by
increasing the number of the harmonics involved in the computations in the signal
generator.

The pulse propagation solution for the complex acoustic pressure field and the
resulting output time-domain pulse at the center element of the receive array due to
all transmitted frequency components is discussed next.

The expression for the time-harmonic acoustic pressure at time t and spatial

location r can be written as
p(t,r) = P(f,r)e*t?*It (2-21)

If we compare Eq. (2-21) with Egs. (2-1) and (2-12), then
Np-1

P,
P(f,r) = ~igp 3 sin(ke20)HS (kr, i) sin(ks, . 2) (2-22)
n=0

for the pressure-release surface with a rigid bottom model and
_ -PO Nl -1 - (2) .
P(fr)= =i X By sinlku, 20/ HS (k1) sk, 2 (2-23)

n=0
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for the pressure-release surface with a fluid bottom model. Therefore, the complex

acoustic pressure field at time t and position r due to a transmitted pulse is given by

+00 .
ptr) = [ X(FIP(f,0)et™ df (2~ 24)
where the term P(f,r)e*ti2"/! is the time-harmonic solution and X (f) is the complex
frequency spectrum of the real transmitted bandpass signal z(¢). The frequency
spectrum X (f) is related to the complex frequency spectrum X (f) of the complex

envelope Z(t) as follows :

1y .
X(f) = 3{X( ~ f) + X[~(F + £} (2~ 25)
where f,. is the carrier frequency of the transmitted signal [Ref. 7:pp. 187-188].

The signal generator represents the complex envelope &(t) by a finite Fourier

series

K
i) = Y cpetitrabet tj<Z (2 —26)
9=-K

where ¢, is the complex Fourier coefficient at harmonic ¢, f, is the fundamental
frequency in hertz of the transmitted pulse, and Ty = 1/ fp is the fundamental period
in seconds [Ref. 6]. The integer K defines the highest harmonic number required to
represent the baseband complex envelope of the transmitted signal.

With the use of Eq. (2-26), the complex frequency spectrum X(f) of the

complex envelope is given by

. K
X(f)= 3 eblf ~af) (2 - 21)
and, as a result,
~ K K
X(f-f)= _ZK ciblf — (fe + 9fo)] - (2-28)

The complex conjugate frequency spectrum X*(f) of the complex envelope is given

by
K

X'(f)y= 3 ¢o6(f —qfo) (2 -29)

g=-K

12




and, as a result,
K

X'=(f+ )= Y G8lf + (fe + 9f0)] (2-30)

9=—-K
since

61— (f + fe + 9fo)) = 8lf + (fe + o)) - (2 -31)

Next, by using Egs. (2-25), (2-27) and (2-30) in Eq. (2-24), it can be written as
1 [+ 4i2nft
ptr) = 5[ Seblf - (fe+ afa)lPf0)et s
o 4

#3 Sl + Ut P D o-m)
or
p(t,r) = -;—; coP(f. + qfo, r)etmaotgti2eset

+ %zq: ey Pl=(fe + qfo), rle~7mehtemsmIel (2 - 33)
Since it can be shown that

P[—(fc+qf0)s£]=P‘(f¢+qf03£) L) (2—34)
by using Eq. (2-34) in Eq. (2-33), it can be written as

p(t,r) = l & P(f. + qfo,r etizrafotgti2nfet 4 1. p f-+qfo,r eti2mafot j+i2mfct *
2 4 ?
9

(2 —35)
or
p(t,r) = RG{Z cqP(fe + afo, z)e+j2""’°‘ej2”’°‘} (2 — 36)
9
since for any arbitrary complex quantity Z, it is known that
1
Re{Z} = E(Z +2Z°). (2-37)

Finally, the pulse propagation solution for the complex acoustic pressure field due to

all transmitted frequency components is given by
p(t,r) = Re{p(t,r)e*/?"'} (2 —38)

13




where
K

pt,r) = Y coP(f. + qfo,r)eti?mebt (2-39)
q=-K

The function of an individual point-element (hydrophone) in a receive array is to
convert an acoustic pressure signal into an electrical output signal. For the purposes

of this thesis, the resulting output electrical signal is assumed to be

y(t,r) = p(t,r) (2 — 40)

which implies that there are no losses in the conversion from acoustic to electric power
at the receiving element (hydrophone).

The peak acoustic pressure amplitude P, at the omnidirectional point source,
which is involved in Egs. (2-1) and (2-12) for the calculation of the time-harmonic
complex acoustic pressure field for both models, is set equal to one pascal, that is,
Py =1 Pa. This implies that a single frequency component of f hertz with amplitude
of 1 volt produces a peak acoustic pressure of 1 pascal at the source. The information
~oncerning the amplitudes of the various frequency components contained in the
transmitted electrical signal z(t) is accounted for in the Fourier coefficients of the
complex envelope #(t).

In order to implement the pressure-release surface with a fluid bottom model,
the roots of the transcendental equation given by Eq. (2-14) must be calculated nu-
merically. For that purpose, the IMSL (MATH/LIBRARY) routine ZBREN/DZBREN
was used. The transcendental equation given by Eq. (2-14) is defined as a function
of 8, where 6. < 0, < 3- A graphical representation of the transcendental equation
and the location of the zero crossings, which are the roots, are shown in Fig. 2.3 for

two typical cases. The use of the IMSL routine ZBREN/DZBREN will be discussed

next.
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First, the left-hand side of the transcendental equation

0
T(6;) = tan (?:—f-D cos 02) + p3ca'cos ; , c3>cy, 6.<8, <%
2 chz\ﬂ".u‘ﬁ%f) -1
(2-—41)

is sampled with the first sample taken very close to 6.. The reason for this is to
eliminate the possibility of missing a root very close to 8.. The sampling is terminated
with the last one taken at 90°. The sampled values of the function T(0;) are stored
in an array. Next, the program checks the sign of each sample in the array in order to
find two consecutive samples with opposite signs. These two values are then passed
to the DZBREN routine. The DZBREN routine is a double precision routine and it
is able to find a zero of a real function which changes sign in a given interval. The
routine calculates the root which is included in the given interval to the accuracy
specified by the user. After the first root of the function 7'(6;) is calculated, the
next array element to be put through the checking procedure is increased by a step
size whose value corresponds to the distance Af; = (90° — 6.)/N,. This distance
gives an estimation, in degrees, of how much apart the roots are located. The above
mentioned step is calculated as INT[A8,/2d], where d is the interval between the
samples of the T'(,) function. This is done to avoid wasting the computer’s time
in performing unnecessary sign checking. After a new root has been calculated, the
algorithm checks if the total number of the expected roots N; has been reached. The
procedure is followed until all the roots are calculated. The total number of roots
should be eq 1al to the value of N, , where the root #; = 90° is not included, since this
normal mode does not contribute to the total acoustic field. The first root, which

corresponds to the normal mode n = 0, is the one closest to 90°.
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The computer simulation program for both models has been developed by in-
corporating the mathematical equations discussed in Sections A and B, and the sup-

plementary information of the present section.
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III. COMPUTER SIMULATION RESULTS

In this chapter, the computer simulation results for each model are presented
and discussed. The models were examined under a relatively wide range of dif-
ferent cases. Both of the models were tested for various transmitted signals, that
is, Hamming-envelope and rectangular-envelope continuous wave (CW) and linear-
frequency-modulated (LFM) pulses. The models were also tested for various locations
of the receiver, that is, the receiver was located at different ranges (short-range and
long-range) and also at different depths (above and below the source). For all the
test cases, that are presented in this thesis, the source is an omnidirectional point
source located at the rectangular coordinates (0,0,29), where the depth 2, is set to
2o = 30 m. The receiver is a 9x9 planar array of point elements (hydrophones) and
it is shown in Fig. 3.1. The receive array is was placed at two different ranges (i.e.,
short-range: Xg = 1000 m, and long-range: Xgr = 10000 m) and also at two different
depths (i.e., above the source: Zr = 20 m, and below the source: Zr = 80 m). The
depth of the ocean was set to D = 100 m.

The transmitted signals for the test cases are well known and they are briefly
summarized as follows:

A continuous-wave (CW) pulse is described by [Ref. 7:pp. 193-195]
z(t) = a(t)cos(2n fet) ,  |t| <2 (3-1)

where Tp is the pulse length in seconds, f. is the carrier frequency in hertz, and a(?)
is the amplitude modulating signal.
A linear-frequency-modulated (LFM) pulse is described by [Ref. 7:pp. 195-197]

z(t) = a(t)cos2r f.t + 6(t)] , It} < I,f (3-2)

18
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where the angle-modulating signal or phase deviation 8(t) is given by
0(t) = bt? 3-3)

where b is the phase-deviation constant:.in radians per square second. When b > 0,
the LFM pulse is called an “up chirp” and when b < 0 it is called a “down chirp”.
The quantity bTp /7 is referred to as the swept bandwidth in hertz.

The Hamming-envelope is a commonly used envelope and the corresponding

amplitude modulating signal a(t) is given by

a(t) = A(o.54 + 0.46cos ?ZT—t) , gt (3—4)
P

where A (a constant) is the amplitude of the transmitted electrical pulse. For the

rectangular-envelope case, the amplitude modulating signal is given by
aty=A4, <. (3-5)

The computer simulation results that are used in order to compare the two
models for all the test cases are (i) the output time-domain electrical pulse from the
center element in the receive array and (ii) the characteristics of the complex acous-
tic pressure field (magnitude and phase as a function of frequency at each point of
the field) when the previously mentioned input electrical signals at the source are
transmitted through each model. There are also some other simulation results, which
give additional information about the propagation of the transmitted pulses through
the two models. These additional simulation results for both models include (i) the
group speed, time of arrival, etc., of the propagating modes for three characteristic
frequencies (i.e., lowest, carrier, and highest) of the frequency spectrum of the trans-
mitted pulse, and for the fluid bottom model, (ii) a graphical representation of the
transcendental equation for these three frequencies. The results of the various test

cases will be presented and discussed in the following order:
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¢ Hamming-envelope CW pulse propagation using the rigid and the fluid bottom

models in the short range (receiver located above and below the source).

¢ Hamming-envelope CW pulse propagation using the fluid bottom model in the

long range (receiver located above and below the source).

¢ Hamming-envelope LFM pulse propagation using the rigid and the fluid bottom

models in the short range (receiver located above and below the source).

¢ Hamming-envelope LFM pulse propagation using the fluid bottom model in the

long range (receiver located above and below the source).

e Rectangular-envelope CW pulse propagation using the fluid bottom model in

the long range (receiver located above and below the source).

o Rectangular-envelope LFM pulse propagation using the fluid bottom model in

the long range (receiver located above and below the source).

A. HAMMING-ENVELOPE PULSES

1. Continuous-wave (CW) pulse

The transmitted electrical signal is a Hamming-envelope CW pulse and it is
shown in Fig. 3.2. The transmitted pulse was generated by the signal generator
subprogram [Ref. 6]. The characteristics of the pulse shown in Fig. 3.2 and the
notation are as follows:

Amplitude A = 10.0

Pulse Length Tp = 100.0 msec

Carrier frequency f. = 250 Hz

Pulse repetition frequency (PRF) or fundamental frequency fo = PRF =

0.4 Hz
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Number of harmonics NFREQ = 101

The parameter NFREQ defines the total number of harmonics required to rep-
resent the baseband complex envelope of the transmitted electrical signal in order to
synthesize the pulse. The value of this parameter gives an indication about the ex-
pected complexity of the involved computations performed by the computer program,
and about the size of the required computer memory. In other words, when the value
of the parameter NFREQ is increased, then the computation time is longer and larger
memory is required for the execution of the program. For the case shown in Fig. 3.2,
the lowest frequency component of the set of harmonics required to represent the
transmitted signal is f = 230 Hz, and the highest is f = 270 Hz.

The short range (i.e., Xg = 1000 m) results of the rigid bottom model are pre-
sented first. The numerical results computed by the program concerning the propa-
gating modes of the lowest (f = 230 Hz), the carrier (f = 250 Hz), and the highest
(f = 270 Hz) frequency components are shown in Tables 3.1, 3.2 and 3.3. These
results are presented only once, that is, for this case only. The involved parameters
and the notation used in these tables are as follows:

MODES: Total number of propagating modes N, [see Eq. (2-7)]

K2: Wave number k; [see Eq. (2-3)]

N: Individual mode number

FN: Cutoff frequency f, for the nth mode [see Eq. (2-6)]

THETAZ2N: Angle of propagation 6, , for the nth mode [see Eq. (2-8)]

KR2N: Propagation vector component k,,, in the radial direction for the nth

mode [see Eq. (2-5)]
KZ2N: Propagation vector component k., , in the z-direction for the nth mode
[see Eq. (2-4)]

CGR2N: Group speed ¢,,, . in the radial direction for the nth mode [see
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Eq. (2-9)]

EN: Energy E, of the nth mode [see Eq. (2-10)]

TR2N: Time of arrival ¢, of the nth mode [see Eq. (2-11)].

The numerical results shown in Tables 3.1, 3.2 and 3.3 characterize the way the
allowed modes for the frequencies f = 230 Hz, f = 250 Hz and f = 270 Hz propagate
through the model.

The complex acoustic pressure (magnitude and phase) across the elements of
the receive array for the carrier frequency (f = 250 Hz) at the two locations of the
receiver are presented by the 3-D plots in Fig. 3.3 and 3.4. Figures 3.3 and 3.4 show
how different the magnitude of the resulting acoustic pressure field is, depending on
the depth of the receiver for the same horizontal range.

In the rigid bottom model the allowed angle of propagation for the nth normal
mode can be in the range 0° < 6,, < 90° and it is restricted only by the cutoff
frequency f, for that mode. Some frequency components which are very close to the
cutoff frequency f, of the nth mode will propagate at very small propagation angles
(i.e., in the range 0° — 10° ). Therefore, the effects of these frequency components
are expected to take more time to appear in the received pulse. As a result, the
fundamental frequency fo of the transmitted pulse must be chosen small enough in
order that all frequency components, propagating at various modes and angles, arrive
at the receiver within the fundamental period Ty = 1/ f seconds.

The resulting output time-domain pulses from the center element of the receive
array for fo = 0.4 Hz and for the two receiver locations are shown in Fig. 3.5.

In order to increase the fundamental period Tp, an attempt was made of using
fo = 0.2 Hz. The transmitted electrical signal for fo = 0.2 Hz is shown in Fig. 3.6.
The number of harmonics required to represent this signal is NFREQ = 201. The

resulting output time-domain pulses from the center element of the receive array for
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Figure 3.5 Rigid bottom: Output signal for Hamming-envelope CW pulse
(fo = 0.4 Hz) for (a) receiver above the source and (b) receiver below the
source.
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fo = 0.2 Hz and for the two receiver locations are shown in Fig. 3.7.
The output electrical signals in Figs. 3.5 and 3.7 are plotted as a function of

the retarded time, in msec, where the retarded time is defined as

_ HRZRNG

C2

t (3 -6)

where HRZRNG is the horizontal range between the source and the receive array,
and c; is the speed of sound in the ocean.

It is evident from the results shown in Fig. 3.7 that the fundamental frequency
fo = 0.2 Hz is not small enough to represent the overall received signal. In order to
increase further the fundamental period Tj, an attempt was made of using fo = 0.1 Hz
and both the transmitted and resulting output signal for the receiver above the source
are shown in Fig. 3.8. Note the number of harmonics (NFREQ = 401) required to
represent this transmitted pulse. However, it must be mentioned that, although this
simulation case (fo = 0.1 Hz) execution was completed, an extremely large memory
area and a very long computational time were required. Since it is ineffective for the
purposes of the present thesis try to execute such cases, the rigid bottom model was
tested for fo = 0.4 Hz and for short range cases only in the remaining test cases. The
output results of the rigid bottom model for fo = 0.4 Hz are representative enough
in order to compare the effectiveness of the two models.

Next, the fluid bottom results are presented. The transmitted electrical signal
for fo = 2.5 Hz is shown in Fig. 3.9. The number of harmonics required to represent
this pulse is NFREQ = 17. A graphical representation of the transcendental equation
for the frequencies f = 230 Hz (lowest), f = 250 Hz (carrier) and f = 270 Hz (highest)
is presented in Figs. 3.10, 3.11, and 3.12, respectively. The parameter THETAC
refers to the critical angle 0, of incidence. The values of the transcendental equation

vary from +oo to —oo but, in order to present the function clearly, it has been
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Figure 3.7 Rigid bottom: Output signal for Hamming-envelope CW pulse
(fo = 0.2 Hz) for (a) receiver above the source and (b) receiver below the
source.
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truncated in the range of £ 10. The expected locations of the roots of the equation
are easily recognized at the zero-crossing points of the function. The numerical results
characterizing the allowed propagating modes for the lowest frequency f = 230 Hz,
the carrier frequency f = 250 Hz and the highest frequency f = 270 Hz are shown in
Tables 3.4, 3.5 and 3.6.

The notation used in these tables and the involved parameters are as follows:

MODES: Total number of trapped modes N; [see Eq. (2-19)]

K2: Wave number k; [see Eq. (2-3)]

N: Individual mode number

FN: Cutoff frequency f, for the nth mode [see Eq. (2-18)]

THETAZ2N: Angle of propagation 6, , for the nth mode [see Eq. (2-14)]

KR2N: Propagation vector component k,,, in the radial direction for the nth

mode [see Eq. (2-16))
KZ2N: Propagation vector component k, , in the z-direction for the nth mode
[see Eq. (2-17)]
CGR2N: Group velocity Cgr, , in the radial direction for the nth mode [see
Eq. (2-20)]

EN: Energy E, of the nth mode [see Eq. (2-13)]

TR2N: Time of arrival t,, , of the nth mode [see Eq. (2-11)]

By looking at these tables, it is verified that the roots of the transcendental
equation (i.e., the angles of propagation 6, ,, which have been numerically calculated
by the computer program) agree with the expected locations determined in Figs.
3.10, 3.11, and 3.12. Note also that the propagating modes are restricted by two
factors, i.e., the cutoff frequency f, and the critical angle of incidence §.. Therefore,
for the fluid bottom model there are no modes propagating with angles smaller than

the critical angle 4..
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The complex acoustic pressure field (magnitude and phase) across the elements
of the receive array for the carrier frequency and the two locations of the receiver are
shown in Fig. 3.13 and 3.14. It is shown again that the depth of the receiver has a
definite effect in the resulting acoustic pressure field.

The resulting output pulses at the center element of the array for the two cases
are shown in Fiq. 3.15. The duration of the resulting output pulse is about 200 msec
long, while for the rigid bottom model a time window of length 10 sec is not long
enough to present the complete output signal for that model. The reason is that the
number of allowed propagating modes for the rigid botton model are about twice as
many as for the fluid bottom model. As a result, it takes these additional modes in
the rigid bottom model longer to reach the receiver.

In order to investigate further the efficiency of the fluid bottom model, the long
range results are presented next. The transmitted signal for fo = 0.8 Hz is shown
in Fig. 3.16. The number of harmonics for this case is NFREQ = 51. The acoustic
pressure field (magnitude and phase) across the receiver for the carrier frequency and
for the two depths of the receiver is shown in Fiq. 3.17 and 3.18.

The resulting output pulses at the center element of the array for the two depths
of the receiver are shown in Fig. 3.19. The duration of the output pulse is about 1000
msec long. Therefore, the output pulse is 10 times longer than the transmitted pulse
(Tp = 100 msec). The shape of the transmitted pulse is distorted at the receiver due
to dispersion effects. These effects are more evident in the long range case compared
to the short range results shown in Fig. 3.15. It is also interesting to observe how
different the shape of the output pulse is at the same range but at two differrent

receiver depths.
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Figure 3.13 Fluid bottom: Magnitude of the complex acoustic pressure
field for Hamming-envelope CW pulse for (a) receiver above the source
and (b) receiver below the source.
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Figure 3.14 Fluid bottom: Phase of the complex acoustic pressure field

for Hamming-envelope CW pulse for (a) receiver above the source and (b)

receiver below the source.
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Figure 3.15 Fluid bottom: Output signal for Hamming-envelope CW pulse
(fo = 2.5 Hz) for (a) receiver above the source and (b) receiver below the

source.
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Figure 3.17 Fluid bottom: Magnitude of the complex acoustic pressure

field for Hamming-envelope CW pulse for (a) receiver above the source
and (b) receiver below the source.
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Figure 3.18 Fluid bottom: Phase of the complex acoustic pressure field

for Hamming-envelope CW pulse for (a) receiver above the source and (b)
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2. Linear-frequency-modulated (J.FM) pulse

The transmitted electrical signal is a Hamming-envelope LFM pulse and it is
shown in Fig. 3.20. The characteristics of the pulse and the notation are the same
as for the CW pulse case. Additionally, the parameter SWPTBW refers to the swept
bandwidth of the LFM pulse and the parameter CHIRP defines whether the pulse is an
“up chirp” or “down chirp”. The transmitted pulse is an “up chirp” with SWPTBW
= 80.0 Hz. For the pulse shown in Fig. 3.20, more harmonics are required to represent
its complex envelope (NFREQ = 301) compared to the CW pulse shown in Fig. 3.2.
This implies that the computer simulation of an LFM pulse is more complicated and
more computation time is required for the program execution than for the CW pulse
case.

Next, the rigid bottom model results for the short range case are presented. The
transmitted Hamming-envelope LFM pulse for fo = 0.4 Hz is shown in Fig. 3.20. The
complex acoustic pressure field across the elements of the receive array for the carrier
frequency and for the two locations of the receiver are presented by the 3-D plots in
Fig. 3.21 and 3.22.

The resulting output time-domain pulses from the center element of the receive
array and for the two receiver locations are shown in Fig. 3.23. These results are
similar to the Hamming-envelope CW pulse, i.e., the duration of the resulting pulse
is too long to fit into this time window of length Ty = 1/fo = 2500 msec. Again,
there are some modes propagating at very small angles and, as a result, these modes
need a long time to reach the receiver.

Next, the fluid bottom model results are presented. The transmitted electrical
signal for the short range case is shown in Fig. 3.24. For this case the number of
harmonics is NFREQ = 49. The lowest frequency is f = 190 Hz and the highest is

f = 310 Hz. The complex acoustic pressure field (magnitude and phase) across the
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Figure 3.21 Rigid bottom: Magnitude of the complex acoustic pressure
field for Hamming-envelope LFM pulse for (a) receiver above the source
and (b) receiver below the source.

53




N 1
’(Hz

CASE:RIGID

FREQUENCY: 250.0 HZ

ZT: 30.0 M XR: 1000.0 M YR: 0.0 H 2ZR: 20.0 M

(a)

%0
—

=

THRGTADLSY
L)

CASE: RIGID

© FREQUENCY: 250.0 HZ

2T: 30.0 M XR: 1000.0 M YR: 0.0 M ZR: B80.0 M

(b)
Figure 3.22 Rigid bottom: Phase of the complex acoustic pressure field

for Hamming-envelope LFM pulse for (a) receiver above the source and
(b) receiver below the source.
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below the source.
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receiver for the carrier frequency and for the two receiver depths is shown in Fig. 3.25
and 3.26.

The resulting output pulses at the center element of the receive array are shown
in Fig. 3.27. The output pulse is about 200 msec long and it is twice as long as the
transmitted pulse (Fig. 3.24), due 1o dispersion effects. Note again that the depth
where the receiver is located affects greatly the shape of the received signal.

The fluid bottom model results for the propagation of a Hamming-envelope
LFM pulse for the long range case are presented next. The transmitted electrical
signal for fo = 0.8 Hz is shown in Fig. 3.28. For this case, the number of harmonics
is NFREQ = 151. The complex acoustic pressure field (magnitude and phase) across
the receive array for the carrier frequency and the two receiver depths is shown in
Fig. 3.29 and 3.30.

The resulting output pulses at the center element of the receiver for the two re-
ceiver locations are shown in Fig. 3.31. The output pulse is approximately 1000 msec
long as for the Hamming-envelope CW pulse in the long range case. The dispersion
effects and the distortion are again more evident in the long range case compared to
of the short range case.

The performance of both models (i.e., the rigid bottom and the fluid bottom)
for the propagation of the two different pulses ( i.e., the CW and the LFM pulse)
with the same envelope function (i.e., the Hamming-envelope) has been investigated
in this section. Based on the computer simulation results, the conclusions are (i)
CW pulse propagation is easier to implement than LFM pulse propagation since
less harmonics are involved in the CW pulse representation, (ii) the depth of the
receiver affects the shape of the output signal and the complex acoustic field across
the array elements, (iii) the transmitted electrical pulse is distorted at the receiver

due to dispersion effects, and these are more evident in the long range case, and (iv)
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Figure 3.25 Fluid bottom: Magnitude of the complex acoustic pressure

field for Hamming-envelope LFM pulse for (a) receiver above the source
and (b} receiver below the source.
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Figure 3.27 Fluid bottom: Output signal for Hamming-envelope LFM
pulse (fo = 2.5 Hz) for (a) receiver above the source and (b) receiver
below the source.
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0.8 Hz).
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Figure 3.28 Hamming-envelope LFM pulse (fo
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Figure 3.29 Fluid bottom: Magnitude of the complex acoustic pressure

field for Hamming-envelope LFM pulse for (a) receiver above the source
and (b) receiver below the source.
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the amplitude of the output time-domain electrical signal depends on the range where
the receiver was placed, that is, the amplitude of the output signal in the long range
case is smaller compared to the short range case for each model and for the same

transmitted electrical signal.

B. RECTANGULAR-ENVELOPE

1. Continuous-wave (CW) pulse

The transmitted electrical signal is a rectangular-envelope CW pulse with Lanc-
zos smoothing and it is shown in Fig. 3.32 for fo = 2.5 Hz and fo = 0.8 Hz. These
pulses have the same parameter values as with the Hamming-envelope CW pulses
shown in Figs. 3.9 and 3.16. It is shown in Fig. 3.32 that for both pulses, more
harmonics are required compared to the Hamming-envelope CW pulses. This is due
to the discontinuities at the beginning and the end of the rectangular envelope and,
therefore, more harmonics are needed in order to represent the pulse accurately.

The propagation of this pulse is investigated using the fluid bottom model for
the long range case. The long range case was chosen since this case is generally
more realistic and more interesting from an application point of view than the short
range case. As in the previous section, the receiver is located at two different depths,
i.e., above and below the source. In order to be able to observe the overall received
electrical signal, the pulse is transmitted over the fundamental period Tp = 1/f =
1/0.8 = 1250 msec.

The complex acoustic pressure field (magnitude and phase) across the receive
array for the carrier frequency and for both receiver depths is shown in Figs. 3.33
and 3.34. The 3-D plots show how the magnitude and phase of the acoustic pressure
changes, over the array elements when the depth of the receiver changes.

The resulting output electrical signal at the center element of the array for
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the two receiver depths is shown in Fig. 3.35. As for the Hamming-envelope case,
the duration of the output pulse is approximately 1000 msec long, due to dispersion
effects. It is also observed that the shape of the received pulse depends greatly on
the depth of the receiver.

2. Linear-frequency-modulated (LFM) pulse

The rectangular-envelope LFM pulses with Lanczos smoothing for fo = 2.5 Hz
and fo = 0.8 Hz are shown in Fig. 3.36. A LFM pulse requires more harmonics in
order to represent its complex envelope compared to a CW pulse.

The long range case was also chosen in order to present the performance of the
fluid bottom model. The transmitted pulse has a fundamental frequency of fo = 0.8
msec. The complex acoustic pressure field (magnitude and phase) across the receive
array for the carrier frequency and for both receiver depths is shown in Fig. 3.37 and
3.38. The resulting output electrical signal at the center element of the array for the

two receiver depths is shown in Fig. 3.39.

The performance of the fluid bottom model under the propagation of the rectangular-

envelope CW and LFM pulses for the long range case has been examined in this sec-
tion. Based on the computer simulation results, the conclusions are (i) the rectangular-
envelope function is more complicated to simulate than the Hamming-envelope since
more harmonics must be included, (ii) the shape of the complex acoustic pressure
field across the receive array and the output electrical signal are affected greatly by
the depth of the receiver, and (iii) the CW pulse has been easier to simulate since

less computer memory space and computation time are required.
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IV. CONCLUSIONS AND
RECOMMENDATIONS

The pressure-release surface with a rigid bottom model is a simple ocean waveg-
uide model from an analytical point of view. The mathematical equations of this
model are not complicated and they have been relatively easy to program. However,
it is well known that this model is not realistic since the rigid bottom assumption
is not valid. Also, the computer simulation results of the model have shown that
the model is not easily simulated since an extremely large memory area and long
computation time are required. The reason is that many normal modes are allowed
to propagate. Typically, the number of allowed propagating modes in the rigid bot-
tom model are about twice as many as the the number of trapped modes allowed
to propagate in the more realistic fluid bottom model using the same transmitted
electrical signal. Therefore, the rigid bottom model simulation results are, in general,
unrealistic, since due to the dispersion effects, the duration of the resulting output
pulse at the receiver is more than 100 times longer than the transmitted pulse.

The fluid bottom model is more complicated from an analytical point of view
since the transcendental equation (Eq. 2-14) is involved. The roots of the transcen-
dental equation must be numerically calculated in order to simulate the model by a
computer program. It was known that this model is a more realistic one, compared
to the rigid bottom model. The computer simulation results have verified that it
performs much more accurately and correctly, than the rigid bottom model [Ref. 8].
Also, the fluid bottom model is easier to implement without extreme memory space

and long computation time requirements.

The pulse propagation computer simulation program which has been used to
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investigate the two models is able to simulate a variety of commonly used envelope
functions, such as the (i) rectangular-envelope, (ii) rectangular-envelope with Lanczos
smoothing, (iii) Hamming-envelope, and (iv) Hanning-envelope. In this thesis, we
have chosen to present the results of the test cases using envelope functions (ii) and
(iii) only, as the representative cases from the whole group. The other envelope
functions have been tested also and they perform effectively.

It is recommended that no further research work be done on the rigid bottom
ocean waveguide model since it is not a very realistic model. However, research work
should continue on the fluid bottom ocean waveguide model. For example, work
should continue on incorporating the effects of attenuation (sound absorption) and

arbitrary sound-speed profiles into the model.
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